Optimization of Active Muscle Force-Length Models Using Least Squares Curve Fitting
نویسندگان
چکیده
The objective of this paper is to propose an asymmetric Gaussian function as an alternative to the existing active force-length models, and to optimize this model along with several other existing models by using the least squares curve fitting method. The minimal set of coefficients is identified for each of these models to facilitate the least squares curve fitting. Sarcomere simulated data and one set of rabbits extensor digitorum II experimental data are used to illustrate optimal curve fitting of the selected force-length functions. The results shows that all the curves fit reasonably well with the simulated and experimental data, while the Gordon-Huxley-Julian model and asymmetric Gaussian function are better than other functions in terms of statistical test scores root mean squared error and R-squared. However, the differences in RMSE scores are insignificant (0.3-6%) for simulated data and (0.2-5%) for experimental data. The proposed asymmetric Gaussian model and the method of parametrization of this and the other force-length models mentioned above can be used in the studies on active force-length relationships of skeletal muscles that generate forces to cause movements of human and animal bodies.
منابع مشابه
Efficient constrained local model fitting for non-rigid face alignment
Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The "simultaneous" algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The "project-out" algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor g...
متن کاملDetermination of the best-fitting reference orbit for a LEO satellite using the Lagrange coefficients
Linearization of the nonlinear equations and iterative solution is the most well-known scheme in many engineering problems. For geodetic applications of the LEO satellites, e.g. the Earth’s gravity field recovery, one needs to provide an initial guess of the satellite location or the so-called reference orbit. Numerical integration can be utilized for generating the reference orbit if a satelli...
متن کاملPredicting sample size required for classification performance
BACKGROUND Supervised learning methods need annotated data in order to generate efficient models. Annotated data, however, is a relatively scarce resource and can be expensive to obtain. For both passive and active learning methods, there is a need to estimate the size of the annotated sample required to reach a performance target. METHODS We designed and implemented a method that fits an inv...
متن کاملTowards Generic Fitting using Discriminative Active Appearance Models Embedded on a Riemannian Manifold
A solution for Discriminative Active Appearance Models is proposed. The model consists in a set of descriptors which are covariances of multiple features evaluated over the neighborhood of the landmarks whose locations are governed by a Point Distribution Model (PDM). The covariance matrices are a special set of tensors that lie on a Riemannian manifold, which make it possible to measure the di...
متن کاملHigh Dimensional Function Approximation [ Regression, Hypersurface Fitting ] by an Active Set Least Squares Learning Algorithm
1 1 Basics of Developing Regression Models from Data 3 1.1 Classic Regression Support Vector Machines Learning Setting 3 2 Active Set Method for Solving QP Based SVMs’ Learning 11 3 Active Set Least Squares (AS-LS) Regression 15 3.1 Implementation of the Active Set Least Squares Algorithm 19 3.1.1 Basics of Orthogonal Transformation 20 3.1.2 An Iterative Update of the QR Decomposition by Househ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on bio-medical engineering
دوره 63 3 شماره
صفحات -
تاریخ انتشار 2016